Abstract
Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi-1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti–Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in Lacoste et al (2008 Phys. Rev. E 78 011915). We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of Lacoste et al (2008 Phys. Rev. E 78 011915) can be extended to derive the above Gallavotti–Cohen symmetry for any Markov random walk on with periodic jump rates. Finally, we review in the present context some large deviation results of Faggionato and Silvestri (2017 Ann. Inst. Henri Poincaré 53 46–78) and give some specific examples with explicit computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.