Abstract

The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small number of reactant molecules and thus internal molecular fluctuation is considerable. Here we studied how an FFL responds to small external signal inputs at gene X, with particular attention paid to the fluctuation resonance (FR) phenomenon of gene Z. We found that for all coherent FFLs, where the sign of the direct regulation path from X to Z is the same as the overall sign of the indirect path via Y, the FR shows a regular single peak, while for incoherent FFLs, the FR exhibits distinct bimodal shapes. The results indicate that one could use small external signals to help identify the regulatory structure of an unknown FFL in complex gene networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.