Abstract
Relationships are obtained expressing the breaking of spin-reversal symmetry by an external magnetic field in Gibbsian canonical equilibrium states of spin systems under specific assumptions. These relationships include an exact fluctuation relation for the probability distribution of the magnetization, as well as a relation between the standard thermodynamic entropy, an associated spin-reversed entropy or coentropy, and the product of the average magnetization with the external field, as a non-negative Kullback–Leibler divergence. These symmetry relations are applied to the model of noninteracting spins, the 1D and 2D Ising models, and the Curie–Weiss model, all in an external magnetic field. The results are drawn by analogy with similar relations obtained in the context of nonequilibrium physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.