Abstract

Abstract The traditional statistical description of the spatial and temporal distributions of cloud droplets and raindrops is the Poisson process, which tends to place the drops as uniformly as randomness allows. Yet, the “clumpy” nature of clouds and precipitation is apparent to most casual observers and well known to cloud physicists. Is such clumpiness consistent with the Poisson statistics? The authors explore the possibility of deviations from the Poisson distribution using temporal raindrop counting experiments. Disdrometer measurements during the passage of a squall line strongly indicate that a mixture of Poisson distributions (Poisson mixture) provides a better description of the frequency of drop arrivals per unit time in variable rain than does a simple Poisson model. Poisson mixture generally yields distributions different from Poissonian. While the validity of the Poisson mixture model to smaller scales requires much finer temporal resolution than available in this study, these results do sho...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call