Abstract
Stock market forecasting has long been a focus of financial time series prediction. In this paper, we investigate and forecast the price fluctuation by an improved Legendre neural network. In the predictive modeling, we assume that the investors decide their investing positions by analyzing the historical data on the stock market, so that the historical data can affect the volatility of the current stock market, and a random time strength function is introduced in the forecasting model to give a weight for each historical data. The impact strength of the historical data on the market is developed by a random process, where a tendency function and a random Brownian volatility function are applied to describe the behavior of the time strength, here Brownian motion makes the model have the effect of random movement while maintaining the original fluctuation. Further, the empirical research is made in testing the predictive effect of SAI, SBI, DJI and IXIC in the established model, and the corresponding statistical comparisons of the above market indexes are also exhibited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.