Abstract

Geometric error has significant influence on the processing results and reduces machining accuracy. Machine tool geometric errors can be interpreted as a deterministic value with an uncertain fluctuation of probabilistic distribution. Although, the uncertain fluctuation can not be compensated, it has extremely profound significance on the precision and ultra-precision machining to reduce the fluctuation range of machining accuracy as far as possible. In this paper, a typical 3-axis machine tool with high precision is selected and the fluctuations in machining accuracy are studied. The volumetric error modeling of machine tool is established by multi-body system (MBS) theory, which describes the topological structure of MBS in a simple and convenient matrix form. Based on the volumetric error model, the equivalent components of the errors for the three axes are established by reducing error terms. Then, the fluctuations of equivalent errors and the machining accuracy in working planes are depicted and predicted using the theory of stochastic process, whose range should be controlled within a certain confidence interval. Furthermore, the critical geometric errors that have significant influence on the machining accuracy fluctuation are identified. Based on the analysis results, some improvement in the machine tool parts introduced and the results for the modified machine show that the prediction allow for reduction in errors for the precision and ultra-precision machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.