Abstract

Air in water flow is a frequent phenomenon in hydraulic structures. The main reason for air entrainment is vortices at water intakes, pumping stations, tunnel inlets, and so on. The accumulated air, in a conduit, can evolve to a different flow pattern, from stratified to pressurized. Among different patterns, slug is most complex with extreme pressure variations. Due to lack of firm relations between pressure and influential parameters, study of slug flow is very important. Based on an experimental model, pressure fluctuations inside a circular, horizontal, and inclined pipe (90mm inside diameter and 10m long) carrying tow-phase air-water slug flow has been studied. Pressure fluctuations were sampled simultaneously at different sections, and longitudinal positions. The pressure fluctuations were measured using differential pressure transducers (DPT), while behavior of the air slug was studied using a digital camera. The objective of the paper is to predict the pressure variation in a pipeline or tunnel, involving resonance and shock waves experimentally. The results show that the more intensive phase interaction commences stronger fluctuations. It is shown, that the air-water mixture entering the pipe during rapid filling of surcharging can cause a tremendous pressure surge in the system and may eventually cause failure of the system (e.g., the maximum pressure inside the pipe would reach up to 10 times of upstream hydrostatic pressure as suggested by others too). Relations for forecasting pressure in these situations are presented as a function of flow characteristics, pipe geometry, longitudinal, and cross-sectional positions and head water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.