Abstract
We investigate a sequence of Galton-Watson branching processes with immigration, where the offspring mean tends to its critical value 1 and the offspring variance tends to 0. It is shown that the fluctuation limit is an Ornstein-Uhlenbeck-type process. As a consequence, in contrast to the case in which the offspring variance tends to a positive limit, it transpires that the conditional least-squares estimator of the offspring mean is asymptotically normal. The norming factor is n 3/2, in contrast to both the subcritical case, in which it is n 1/2, and the nearly critical case with positive limiting offspring variance, in which it is n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.