Abstract
Abstract In this paper, we report on the computation of the induced forces in crosslinked polymer blends, with immersed small colloidal particles (nanoparticles) or confined to two parallel plates (film). We assume that the particles or the walls prefer to be attracted by one polymer, close to the spinodal temperature where a microphase separation takes place. This is the so-called “critical adsorption”. As an assumption, the particle diameter or the film thickness is considered to be small enough in comparison with the size of microdomains (“mesh size”). The critical fluctuations of the crosslinked mixture induce a pair potential between particles located in the non-preferred phase or between the confining walls. The purpose is to recall how this Casimir pair potential can be determined, as a function of the interparticle distance or the walls separation. To achieve calculations, use is made of an extended de Gennes model that takes into account the colloid-polymer and polymer-wall interactions. Finally, the obtained results are compared to those relatively to uncrosslinked polymer blends in the same geometries, and the main conclusion is that the induced force is reduced by the presence of permanent crosslinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Polymer Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.