Abstract
Experimental and theoretical studies are made of Brownian particles trapped in a periodic potential, which is very slightly tilted due to gravity. In the presence of fluctuations, these will trigger a measurable average drift along the direction of the tilt. The magnitude of the drift varies with the ratio between the bias force and the trapping potential. This can be closely compared to a theoretical model system, based on a Fokker-Planck-equation formalism. We show that the level of control and measurement precision we have in our system, which is based on cold atoms trapped in a three-dimensional dissipative optical lattice, makes the experimental setup suitable as a testbed for fundamental statistical physics. We simulate the system with a very simplified and general classical model, as well as with an elaborate semiclassical Monte Carlo simulation. In both cases, we achieve good qualitative agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.