Abstract

Starting from an axiomatic perspective, fluctuation geometry is developed as a counterpart approach of inference geometry. This approach is inspired on the existence of a notable analogy between the general theorems of inference theory and the general fluctuation theorems associated with a parametric family of distribution functions dp(I|θ) = ρ(I|θ)dI, which describes the behavior of a set of continuous stochastic variables driven by a set of control parameters θ. In this approach, statistical properties are rephrased as purely geometric notions derived from the Riemannian structure on the manifold of stochastic variables I. Consequently, this theory arises as an alternative framework for applying the powerful methods of differential geometry for the statistical analysis. Fluctuation geometry has direct implications on statistics and physics. This geometric approach inspires a Riemannian reformulation of Einstein fluctuation theory as well as a geometric redefinition of the information entropy for a continuous distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.