Abstract

Field-theoretic simulations (FTSs) are performed on ternary blends of A- and B-type homopolymers of polymerization Nh and symmetric AB diblock copolymers of polymerization Nc. Unlike previous studies, our FTSs are conducted in three-dimensional space, with the help of two new semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous microemulsion (BμE) in the polyethylene-polyethylene propylene system, we consider molecules of high molecular weight with size ratios of α ≡ Nh/Nc = 0.1, 0.2, and 0.4. Our focus is on the A + B coexistence between the two homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at which the A + B phases mix to form a disordered melt with increasing temperature (or decreasing χ), is accurately determined using finite-size scaling techniques. We also examine how the copolymer affects the interface between the A + B phases, reducing the interfacial tension toward zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuation effects are relatively small, fluctuations do nevertheless produce the observed BμE that is absent in the SCFT phase diagram. Furthermore, we find evidence of three-phase A + B + BμE coexistence, which may have been missed in the original as well as subsequent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.