Abstract

AbstractA fundamental problem in avalanche science is understanding the interaction between frictional processes taking place at the basal running surface and dissipative mechanisms within the avalanche body. In this paper, we address this question by studying how kinetic energy is dissipated into heat in snow avalanches. In doing so we consider the effect of random granular fluctuations and collisions in depth-averaged snow avalanche models. We show that relationships between the size of the granular fluctuations and the energy dissipated by granular collisions can be obtained by studying the energy input required to maintain steady-state flows. The energy input for granular fluctuations comes from mechanisms operating in the basal layer. The kinetic energy of the flow at the basal layer is converted to granular agitation energy, a random kinetic energy, which in turn is dissipated as heat by both viscous shearing and inelastic collisions at higher levels in the avalanche profile. Thus granular fluctuations play a crucial role in understanding the total dissipation process. We apply our theoretical considerations to develop a constitutive model for dense snow avalanches and are able to accurately model steady-state velocity profiles of both snow-chute experiments and field measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call