Journal of Soils and Sediments | VOL. 20
Read

Fluctuating water level effects on soil greenhouse gas emissions of returning farmland to wetland

Publication Date Jul 22, 2020

Abstract

Future climate change is predicted to have an important impact on regional precipitation patterns. Water level is an important factor influencing soil greenhouse gas emissions. However, the effect of small-scale water level fluctuations on soil greenhouse gas emissions from returning farmland to wetlands has been little studied. We collected soils of three lands from returning farmland to wetland with different restoration years and a natural wetland at the Honghe National Nature Reserve in Sanjiang Plain, China. Through indoor simulation experiments, we explored the characteristics of soil greenhouse gas (CO2, CH4, and N2O) emissions under fluctuating water levels. When the water level fluctuated between − 8 and 8 cm, the CO2 and N2O emissions decreased as the water level increased, but the CH4 emissions were highest when water level fluctuated between − 3 and 3 cm. The CH4 emissions tended to increase as laboratory time extended. Different gases react differently to water level fluctuations. The CO2 emissions contributed 78.90–96.48% of the total global warming potential of the GHG emissions. The results of this study indicate that during the process of returning farmland to wetland, more attention should be paid to the effects of CO2 emissions. An appropriately raised water level can effectively suppress the global warming potential of greenhouse gas emissions.

Concepts

Soil Greenhouse Gas Emissions Water Level Fluctuations Greenhouse Gas Emissions Honghe National Nature Reserve CO2 Emissions Water Level Potential Of Greenhouse Gas Emissions Indoor Simulation Experiments Regional Precipitation Patterns Soil Greenhouse Gas

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.