Abstract

Results from an energy loss model that includes thermal fluctuations in the energy loss for heavy quarks in a strongly-coupled plasma are shown to be qualitatively consistent with single particle data from both RHIC and LHC. The model used is the first to properly include the fluctuations in heavy quark energy loss as derived in string theory and that do not obey the usual fluctuation-dissipation relations. These fluctuations are crucial for simultaneously describing both RHIC and LHC data; leading order drag results without fluctuations are falsified by current data. Including the fluctuations is non-trivial and relies on the Wong-Zakai theorem to fix the numerical Langevin implementation. The fluctuations lead to surprising results: B meson anisotropy is similar to that for D mesons at LHC, and the double ratio of D to B meson nuclear modification factors approaches unity more rapidly than even predictions from perturbative energy loss models. It is clear that future work in improving heavy quark energy loss calculations in AdS/CFT to include all energy loss channels is needed and warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.