Abstract

Heat transfer to an obliquely impinging air jet is investigated experimentally. Distributions of the mean and the fluctuating component of the surface heat transfer are reported for a jet Reynolds number of 10,000, nozzle to impingement surface distance, H/ D, from 2 to 8 and angle of impingement, α, from 30° to 90° (normal impingement). Flow velocity measurements along the impingement surface are related to heat transfer distributions. At specific locations the surface heat transfer and the local fluid velocity are measured simultaneously and coherence and phase difference information between the signals are reported. The vortical characteristic of the flow is shown to vary considerably with the angle of impingement; depending on the distance between the near nozzle edge and the impingement surface, vortices at different stages of development impact with the target surface. The influence of naturally occurring vortices in an impinging jet flow on the magnitude of heat transfer in the near wall jet is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.