Abstract

Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)-one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors.

Highlights

  • Fluctuating asymmetry (FA, small non-random deviations from perfect bilateral symmetry) has been used in a wide variety of taxa as an indicator of exogenous stressors[1,2]

  • Pre-disturbance museum specimens can be directly compared with post-disturbance collections provided: 1) the sampling and treatment of individuals is the same and 2) storage of specimens in the museum does not alter any of the traits of interest [8]

  • Both pre and post Deepwater Horizon (DWH) fish were collected as part of broad community wide sampling that targeted all available habitats with a seine

Read more

Summary

Introduction

Fluctuating asymmetry (FA, small non-random deviations from perfect bilateral symmetry) has been used in a wide variety of taxa as an indicator of exogenous stressors[1,2]. FA in M. beryllina pre- and post-DWH development of left and right sides of bilateral traits can be viewed as replicates of the same structure [3,4]. In the absence of stress or other external inputs, development occurs along predetermined paths potentially resulting in identical left and right sides-perfect symmetry [2]. Organisms rarely develop with perfect symmetry as developmental noise (due to a variety of inherently stochastic processes) results in low levels of asymmetry [3,5]. Environmental stressors that perturb developmental pathways (mechanisms that serve to stabilize development) will further increase asymmetry [2]. Pre-disturbance museum specimens can be directly compared with post-disturbance collections provided: 1) the sampling and treatment of individuals is the same (i.e. individuals are randomly sampled from the environment using the same gear in the same habitats across all collections) and 2) storage of specimens in the museum does not alter any of the traits of interest [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.