Abstract

 Introduction: The formation of co-crystal is widely studied to obtain more favourable physicochemical properties than the pure active pharmaceutical ingredient (API). The co-crystal formation between an anti-fungal drug, fluconazole (FLU), and tartaric acid (TAR) has been investigated and its impact on mechanical properties has also been studied. 
 Methods: The co-crystal of FLU-TAR (1:1) molar ratio was prepared by ultrasound-assisted solution co-crystallization (USSC) method with ethanol as the solvent. Polarization microscopy was used to observe the crystal morphology. Meanwhile, powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) methods were used to characterise the co-crystal formation. The mechanical properties of the co-crystal, such as flowability and tablet-ability, were compared with pure FLU. 
 Results: Photomicroscopes revealed the unique crystal morphology of the USSC product was different from the two starting components. The typical PXRD pattern was shown by the USSC product, which indicated the formation of FLU-TAR co-crystal. In addition, the DSC thermogram revealed 169.2°C as the melting point of the FLU-TAR co-crystal, which is between the melting points of FLU and TAR. It indicates that FLU-TAR co-crystal has better flowability and tablet-ability than pure FLU. 
 Conclusion: FLU-TAR co-crystal is one of the alternative solid forms for a raw material in pharmaceutical tablet preparation because it has better mechanical properties than pure fluconazole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.