Abstract
Purpose: Topical nanoemulsion comprising of fluconazole and curcumin was developed to target multiple drug resistance dermatophytes infection and to facilitate cutaneous delivery of these poorly water soluble drugs. Methods: Almond oil, sesame oil and paraffin light were used to formulate nanoemulsions and screened for the stability. The solubility of fluconazole and curcumin in surfactants, co-surfactants and oils was screened to decide the various components of the nanoemulsion. The oil phase was light paraffin whereas tween 80 and span 80 were the surfactants and ethanol was used as a co-surfactant. To identify the area of nanoemulsion existence, a pseudoternary diagram was drawn and optimum systems were developed. Drug-loading efficiency was assessed and the developed nanoemulsions were characterized for globule size, stability, robustness to dilution and pH. The optimized nanoemulsion was further evaluated for drug content, viscosity, skin permeation study (ex vivo) and assay of antifungal activity. Results: The globule size was below 200 nm and uniform for the optimized nanoemulsion formulation. It showed enhanced skin permeation (ex vivo) and better antifungal efficacy as compared to the native form of fluconazole and curcumin suspensions. Antimicrobial assay confirmed the synergistic effect of fluconazole and curcumin combination against multiple drug resistance Trychophytum rubrum and Trichophyton metagrophytes as compared to the fluconazole alone. Conclusion: The results clearly indicate an optimized delivery of fluconazole and curcumin in a synergistic way from the nanoemulsion formulation. This resulted in better penetration of these poorly soluble molecules and overall enhanced antifungal activity as compared to these drugs as such against multiple drug resistance dermatophytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.