Abstract
This paper aims to address the tracking control problem for the steer-by-wire (SbW) system with uncertain nonlinearity and parameter uncertainty. First, the adaptive fuzzy logic system (FLS) is constructed to realize the intelligent modeling of the SbW system. In addition, an adaptive higher-order sliding mode (AHOSM) control with dynamic gain is designed to overcome the lumped uncertainties including inaccurate model-parameter and fuzzy logic system approximation error, and has the advantage of eliminating the gain-overestimation phenomenon effectively without the prior knowledge about the bounds of approximation error and parameter uncertainty. Furthermore, theoretical analysis based on Lyapunov stability theory is provided to verify that the real sliding mode can be established. Finally, simulations and vehicle experiments are given to evaluate the effectiveness and superiority of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.