Abstract

The potato cyst nematode Globodera pallida is a serious pest of potato crops. Nematode FMRFamide-like peptides (FLPs) are one of the most diverse neuropeptide families known, and modulate sensory and motor functions. As neuromuscular function is a well-established target for parasite control, parasitic nematode FLP signaling has significant potential in novel control strategies. In the absence of transgenic parasitic nematodes and the reported ineffectiveness of neuronal gene RNAi in Caenorhabditis elegans, nothing is known about flp function in nematode parasites. In attempts to evaluate flp function in G. pallida, we have discovered that, unlike in C. elegans, these genes are readily susceptible to RNAi. Silencing any of the five characterized G. pallida flp genes (Gp-flp-1, -6, -12, -14, or -18) incurred distinct aberrant behavioral phenotypes consistent with key roles in motor function. Further delineation of these effects revealed that double-stranded RNA exposure time (> or = 18 h) and concentration (> or = 0.1 microg/ml) were critical to the observed effects, which were reversible. G. pallida flp genes are essential to coordinated locomotory activities, do not display redundancy, and are susceptible to RNAi, paving the way for the investigation of RNAi-mediated flp gene silencing as a novel plant parasite control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call