Abstract

Despite the important role of mechanical signals in bone remodeling, relatively little is known about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast migration behavior was prominent only during the initial period after the onset of the steady flow (for about 30 min), exhibiting shear stress-dependent migration speed, displacement, arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest coefficient (measuring how often cells are paused during migration) assessed for the first 30 min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this initial period, osteoblasts under steady flow showed decreased migration capacity and diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK), a regulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direction and continued shear sensitivity, resulting in greater root mean square displacement at the end of 120 min of measurement. It is notable that the transient osteoblast migration behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351). The study of fluid shear as a driving force for cell migration, i.e., “flowtaxis”, and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis.

Highlights

  • IntroductionConsiderable emphases have been placed on soluble factor-driven cell migration, i.e., chemotaxis

  • For cell migration studies, considerable emphases have been placed on soluble factor-driven cell migration, i.e., chemotaxis

  • MC3T3-E1 osteoblastic cell raw migration tracks are shown in Fig 1A, in which each cell track is distinguished by color and the track initiation is shifted to the center of the plot

Read more

Summary

Introduction

Considerable emphases have been placed on soluble factor-driven cell migration, i.e., chemotaxis. Recent evidences, including our own [1], revealed the importance of fluid flow-induced shear stress in triggering and affecting cell migration, i.e., “flowtaxis”. We showed that mesenchymal stem cell (MSC) migration and its PLOS ONE | DOI:10.1371/journal.pone.0171857. We showed that mesenchymal stem cell (MSC) migration and its PLOS ONE | DOI:10.1371/journal.pone.0171857 February 15, 2017

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call