Abstract
Human safety in crowded environments has been recognized as an important and rapidly growing research area due to its significant implications for public safety. In this study, a series of experiments were performed in a 10 m long corridor to investigate the walking and running pedestrian flows. A piecewise linear decreasing trend is found between the pedestrian density and the corresponding speed difference with the critical density of 1.65 m−2. In the relatively free phase (density < 1.65 m−2), the speed difference decreases significantly with the slope of 0.77. Whereas, the difference remains small with a slope of 0.15 in the constrained phase (density > 1.65 m−2). In the corridor (excluding the 2 m area around the exit), running pedestrians show longer distance headways than the walking ones under relatively low-density situation. Meanwhile, the running flow is more continuous with a lower probability of clogging at the exit in the free phase. In reality, pedestrian density should be an important factor for a decision maker when deciding to take the walking or running evacuation strategy. The data also can be used as validation benchmarks for models that intend to simulate pedestrians evacuating through a corridor in the running way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.