Abstract

Liquid-liquid phase separation is a rich and dynamic process, which recently has gained new interest, especially in biology and for material synthesis. In this work, we experimentally show that co-flow of a nonequilibrated aqueous two-phase system within a planar flow-focusing microfluidic device results in a three-dimensional flow, as the two nonequilibrated solutions move downstream along the length of the microchannel. After the system reaches steady-state, invasion fronts from the outer stream are formed along the top and bottom walls of the microfluidic device. The invasion fronts advance towards the center of the channel, until they merge. We first show by tuning the concentration of polymer species within the system that the formation of these fronts is due to liquid-liquid phase separation. Moreover, the rate of invasion from the outer stream increases with increasing polymer concentrations in the streams. We hypothesize the invasion front formation and growth is driven by Marangoni flow induced by the polymer concentration gradient along the width of the channel, as the system is undergoing phase separation. In addition, we show how at various downstream positions the system reaches its steady-state configuration once the two fluid streams flow side-by-side in the channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.