Abstract

AbstractA k‐weak bisection of a cubic graph G is a partition of the vertex‐set of G into two parts V1 and V2 of equal size, such that each connected component of the subgraph of G induced by () is a tree of at most vertices. This notion can be viewed as a relaxed version of nowhere‐zero flows, as it directly follows from old results of Jaeger that every cubic graph G with a circular nowhere‐zero r‐flow has a ‐weak bisection. In this article, we study problems related to the existence of k‐weak bisections. We believe that every cubic graph that has a perfect matching, other than the Petersen graph, admits a 4‐weak bisection and we present a family of cubic graphs with no perfect matching that do not admit such a bisection. The main result of this article is that every cubic graph admits a 5‐weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5‐flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs that do contain bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call