Abstract

We present FlowPM, a Particle-Mesh (PM) cosmological N-body code implemented in Mesh-TensorFlow for GPU-accelerated, distributed, and differentiable simulations. We implement and validate the accuracy of a novel multi-grid scheme based on multiresolution pyramids to compute large-scale forces efficiently on distributed platforms. We explore the scaling of the simulation on large-scale supercomputers and compare it with corresponding Python based PM code, finding on an average 10x speed-up in terms of wallclock time. We also demonstrate how this novel tool can be used for efficiently solving large scale cosmological inference problems, in particular reconstruction of cosmological fields in a forward model Bayesian framework with hybrid PM and neural network forward model. We provide skeleton code for these examples and the entire code is publicly available at https://github.com/modichirag/flowpm .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.