Abstract

Most nanomaterial-based medicines are intravenously applied since oral administration comprises challenging-related biological obstacles, such as interactions with distinct digestive fluids and their transport through the intestinal barrier. Moreover, there is a lack of nanoparticle-based studies that faithfully consider the above-cited obstacles and boost oral-administered nanomedicines' rational design. In this study, the physicochemical stability of fluorescent model silica nanoparticles (f-SiO2NPs) passing through all simulated gastrointestinal fluids (salivary, gastric, and intestinal) and their absorption and transport across a model human intestinal epithelium barrier are investigated. An aggregation/disaggregation f-SiO2NPs process is identified, although these particles remain chemically and physically stable after exposure to digestive fluids. Further, fine imaging of f-SiO2NPs through the absorption and transport across the human intestinal epithelium indicates that nanoparticle transport is time-dependent. The above-presented protocol shows tremendous potential for deciphering fundamental gastrointestinal nanoparticles' evolution and can contribute to rational oral administration-based nanomedicine design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call