Abstract
Using a hybrid simulation method that combines a lattice-Boltzmann approach for the flow and a molecular dynamics model for the polymer, we investigated the effect of solvent quality on the flow-induced polymer translocation through a nanopore. We demonstrate the nontrivial dependence of the translocation dynamics of polymers on the solvent quality, i.e., the enhancement in the polymer insolubility increases the critical velocity flux and shortens the translocation time. Accordingly, we propose a new strategy to separate polymers with different solubilities via their translocations in the nanopore by adjusting the velocity flux of the flow, which appears to be promising for the design of micro-scaled polymer separation devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.