Abstract

We measured the S- and P-order parameters of flow-induced ordered graphene oxide (GO) particles and the flow velocity profiles for a flowing aqueous GO dispersion in a tube, by using an optical method. The order parameters clearly exhibit increasing concentric biaxial ordering as the flow velocity increases, with the exception of a disordered centre. Newtonian to non-Newtonian transition in the flow velocity profile is found, changing from a parabolic shape to a fuller shape at very low Reynolds numbers less than 10. This is attributed to the shear thinning effect (i.e., an ordering-induced reduction in viscosity). In the Newtonian flow, a uniaxial ordering was dominant; whereas a biaxial ordering sharply increased in the non-Newtonian flow, indicating that both the ordering of GO particles and the interparticle interactions influence the flow profile transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call