Abstract

We present a rapid rescaling algorithm that enables a systematic comparison between the Graham and Olmsted (GO) model for flow-induced nucleation of polymer melts (Graham and Olmsted, Phys Rev Lett 103(11): 115702, 2009) and direct nucleation rate measurements from a flowing polymer melt. We consider polymer melts consisting of pure long chains and bimodal blends of long and short chains. We simulate the nucleation rate for a wide range of free energy barriers under a wide range of applied shear and extensional flows by using an accelerated nucleation algorithm. We then develop a semi-analytical technique to compute efficiently the nucleation rate under flow for monodisperse melts. We extend our approach to bimodal blends using a method to rescale reference data. This allows us to compare the GO model to experimentally measured nucleation rates at several different temperatures. The GO model is able to consistently account for the effect of temperature on flow-induced nucleation. Our modelling will also contribute to the derivation of computationally inexpensive molecular models of flow-induced nucleation in polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.