Abstract
As CPU processing power becomes more powerful and storage capacity increases, performing data-intensive visualization computations involving large data on a desktop computer becomes an increasingly viable option. Desktops, though, usually lack the memory capacity required to load such large data at once, and thus the cost of I/O becomes a major bottleneck for the necessary out-of-core computation. Among techniques that reduce runtime I/O cost, reordering the file layout to increase data locality has become popular in recent years. However, file layout techniques for time-varying scientific data, especially for time-varying flow fields, have been rarely discussed. In this paper, we evaluate the performance impact of utilizing a file layout method for out-of-core time-varying flow visualization. We extend a graph-based representation of flow fields, originally developed for static vector fields, to time-varying flow fields, and apply a graph layout algorithm to order data blocks to be written to disk. Benefits from the generated file layouts are evaluated using various parameters and seeding scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.