Abstract

A joint experimental and computational study has been performed to investigate the flowfield structure created by two crossing oblique shock waves interacting with a turbulent boundary layer. Such an interaction is of practical importance in the design of high-speed sidewall-compression inlets. The interaction is created by a test model, consisting of two sharp fins mounted at 15-deg angle of attack to a flat plate, placed in a Mach 3.85 freestream flow with a unit Reynolds number of 76 X 106/m. Two computational solutions, one using a Baldwin-Lomax algebraic turbulent eddy viscosity model and one using a modified K-£ (Rodi) turbulence model, are compared with experimental flowfield data obtained from a fast-response five-hole probe. Both the experiment and the computations show that the flowfield is dominated by a large, low-Mach-number, low-total-pressure separated region located on the interaction centerline. A comparison of the results shows significant differences between experiment and computations within this separated region. Outside the separated region, the experiment and computations are in good agreement. Additionally, the comparison shows that both turbulence models provide similar results, with neither model being clearly superior in predicting the flowfield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.