Abstract

The performance prediction of axial flow compressors and turbines still relies on the stationary testing of blade cascades. Most of the blade testing studies are done for operating conditions close to the design point or in off-design areas not too far from it. However, blade performance remains unexplored at very far off-design conditions, such as windmilling, characterised by operation under extremely low mass flows and rotational speeds which, in turn, imply highly negative incidence angle values. In this paper, the flow field generated by a 3-dimensional linear compressor cascade at a highly negative incidence angle and zero rotational speed is experimentally investigated using a pneumatic miniature cobra probe. The main objective of the study is to derive the total pressure loss through the blades at such a highly negative incidence angle. An overview of the blade geometry as well as of the experimental facility is given whereas the measurement strategy and the data acquisition technique are also presented. An uncertainty study taking into account the most significant factors affecting the quality of the results has been carried out. As shown by the measurements taken at specific positions downstream of the blades, the flowfield is dominated by highly separated flows on the pressure surface, which contribute to the increased values of the total pressure loss coefficient which seems to be weakly dependent on the inlet Mach number. The quantitative measure of the pressure losses at the extremely negative incidence angle examined can be considered to be a validation platform for correspondent numerical studies of similar flow conditions. Additionally, the experimental results obtained can be used to extend the applicability of the current pressure loss models, increasing the predictive capability of the through flow numerical approaches towards far off-design areas of component or whole engine operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.