Abstract

The effect of floral traits, floral rewards and plant water availability on plant-pollinator interactions are well-documented; however, empirical evidence of their impact on flowering phenology in high-elevation meadows remains scarce. In this study, we assessed three levels of flowering phenology, i.e. population-, individual- and flower-level (floral longevity), in two nearby but contrasting (wet versus dry) sub-alpine meadows on Yulong Snow Mountain, southwestern China. We also measured a series of floral traits (pollen number, ovule number, and the ratio of pollen to ovule number per flower, i.e. pollen:ovule ratio [P/O]) and floral rewards (nectar availability and pollen presentation) as plausible additional sources of variation for each phenological level. Floral longevity in the wet meadow was significantly longer than that for the dry meadow, whereas population- and individual-flowering duration were significantly shorter. Our results showed a significant positive relationship between flowering phenology with pollen number and P/O per flower; there was no relationship with ovule number per flower. Further, we found a significant effect of flowering phenology on nectar availability and pollen presentation. Our findings suggest that shorter floral longevity in dry habitats compared to wet might be due to water-dependent maintenance costs of flowers, where the population- and individual-level flowering phenology may be less affected by habitats. Our study shows how different levels of flowering phenology underscore the plausible effects of contrasting habitats on reproductive success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call