Abstract

Relatively thick (1.2 μm), novel, flower-like nanostructured tungsten oxide thin films are obtained by electrochemically anodizing tungsten foil in a fluoride containing acidified electrolyte solution. X-ray diffraction analysis reveals the presence of monoclinic hydrated tungstite (WO3·2H2O) in the as-prepared samples, while films annealed at 400 °C for 4 h contain predominantly orthorhombic WO3 phase. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and UV−vis spectroscopy are utilized to determine the surface morphology, crystal structure, and optical properties of these WO3 films. An inorganic fullerene-like WO3·2H2O structure is observed, with the water molecules acting as the coordination solvent and allowing crystallographically specific growth of crystallized WO3·2H2O through oriented attachment. We propose here that the formation of the flower-like structured hydrated tungstite film occurs through an anodization/precipitation−recrystallization...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.