Abstract

Geometry changes, especially surface expansion, accompanying flower primordium formation are investigated at the reproductive shoot apex of Arabidopsis with the aid of a non-invasive replica method and a 3-D reconstruction algorithm. The observed changes are characteristic enough to differentiate the early development of flower primordium in Arabidopsis into distinct stages. Primordium formation starts from the fast and anisotropic growth at the periphery of the shoot apical meristem, with the maximum extension in the meridional direction. Surprisingly, the primordium first becomes a shallow crease, and it is only later that this shape changes into a bulge. The bulge is formed from the shallow crease due to slower and less anisotropic growth than at the onset of primordium formation. It is proposed that the shallow crease is the first axil, i.e. the axil of a putative rudimentary bract subtending the flower primordium proper, while the flower primordium proper is the bulge formed at the bottom of this axil. At the adaxial side of the bulge, the second axil (a narrow and deep crease) is formed setting the boundary between the flower primordium proper and the shoot apical meristem. Surface growth, leading to the formation of the second axil, is slow and anisotropic. This is similar to the previously described growth pattern at the boundary of the leaf primordium in Anagallis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.