Abstract

Virus-like particles (VLPs), a kind of superior subunit vaccine, are assembled from the viral structural proteins with similar capsids to viruses. However, the efficiency of cell uptake is not satisfactory. We prepared flower-like mesoporous silica nanoparticles (SiNPs) with large pore channels and interior cavities to solve the problem. The highly loaded VLPs-SiNPs composites not only enhanced the stability of VLPs, but also delivered antigen to cells and improved the cellular uptake efficiency. Compared with naked VLPs, mice intramuscularly immunized with the VLPs-SiNPs composite induced higher specific antibodies, greater lymphocyte activation and higher level of cytokine secretion. Moreover, the VLPs-SiNPs composite as vaccine also promoted mucosal immune response through intranasal immune pathway. Therefore, the VLPs-SiNPs enable to induce strong cellular, humoral, and slight mucosal immune response through different immunization routes. These results are potentially useful for vaccine formulations and may provide further reference for vaccine design and delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call