Abstract
The class B genes, which belong to the MADS-box gene family, play important roles in regulating petal and stamen development in flowering plants. These genes exist in two different types termed DEF- and GLO-like genes, and the B-function is provided by heterodimers of a DEF- and a GLO-like gene product. In the present study, dicot (tobacco and lettuce) and monocot (Tricyrtis hirta) plants were transformed with the GLO-like gene of Agapanthus praecox ssp. orientalis ApGLO alone or in combination with the DEF-like gene of the same plant ApDEF. In two out of 10 transgenic tobacco plants containing ApGLO, sepals partially converted into petaloid organs. For lettuce, ray florets of four out of nine transgenic plants containing ApGLO also developed additional petaloid organs. In two out of five transgenic T. hirta plants containing both ApGLO and ApDEF, organs developed in whorl 4 showed noticeable morphological alteration: they were much longer compared with carpels of non-transgenic plants, and had purple spots overall on the surface as filaments of non-transgenic plants. No morphological alterations were observed in vegetative organs between transgenic and non-transgenic plants for all the three species. The results obtained in the present study indicate a possibility of molecular breeding for flower form alteration by genetic transformation with the class B MADS-box gene(s) of heterologous plant species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.