Abstract

Coffea arabica L. shows peculiar characteristics during reproductive development, such as flowering asynchrony, periods of floral bud dormancy, mucilage secretion and epipetalous stamens. The MADS-box transcription factors are known to control several developmental processes in plants, including flower and fruit development. Significant differences are found among plant species regarding reproductive development and little is known about the role of MADS-box genes in Coffea reproductive development. Thus, we used anatomical and comparative molecular analyses to explore the flowering process in coffee. The main morphological changes during flower development in coffee were observed by optical and scanning electron microscopy. Flowering asynchrony seems to be related to two independent processes: the asynchronous development of distinct buds before the reproductive induction and the asynchronous development of floral meristems within each bud after the reproductive induction. A total of 23 C. arabica MADS-box genes were characterized by sequence comparison with putative Arabidopsis orthologs and their expression profiles were analyzed by RT-PCR in different tissues. The expression of the ABC model orthologs in Coffea during floral development was determined by in situ hybridization. The APETALA1 (AP1) ortholog is expressed only late in the perianth, which is also observed for the APETALA3 and TM6 orthologs. Conversely, the PISTILLATA ortholog is widely expressed in early stages, but restrict to stamens and carpels in later stages of flower development, while the expression of the AGAMOUS ortholog is always restricted to fertile organs. The AP1 and PISTILLATA orthologs are also expressed at specific floral organs, such as bracts and colleters, respectively, suggesting a potential role in the development of such structures. Altogether, the results from our comprehensive expression analyses showed significant differences between the spatiotemporal expression profiles of C. arabica MADS-box genes and their orthologs, which suggests differential functionalization in coffee. Moreover, these differences might also partially explain the particular characteristics of floral development in coffee, such as mucilage secretion and formation of epipetalous stamens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call