Abstract

The flower colour of Anemone coronaria (Ranunculaceae) is a genetically inherited trait. Such intra-specific flower colour polymorphism might be driven by pollinators, other non-pollinating agents, or by abiotic factors. We investigated the genetic relations among red, white and purple-blue flower colour morphs growing in 10 populations of A. coronaria in Israel, in relation to their breeding system, pollination modes, differential perception by bees and visitors’ behaviour. Flowers of these three morphs differed in their reflectance that could be perceived by bees. Honeybees, solitary bees and flies demonstrated only partial preferences for the different colour morphs. No spontaneous self-pollination was found; however, fruit set under nets, excluding insects but allowing wind pollination, was not significantly lower than that of natural free pollinated flowers, indicating a potential role of wind pollination. Anemone coronaria flowers were visited by various insects, honeybees and Andrena sp. preferred the white and purple-blue morphs, while the syrphid flies preferred the white flowers. Thus, visitor behaviour can only partially explain the evolution or maintenance of the colour polymorphism. No significant genetic differences were found among the populations or colour morphs. Wind pollination, causing random gene flow, may explain why no significant genetic divergence was found among all studied populations and their colour morphs. The existence of monomorphic red populations, along other polymorphic populations, might be explained by linked resistance to aridity and/or grazing.

Highlights

  • Flower colour polymorphism refers to the variation in flower colours within or between natural populations of the same species

  • Our results show the absence of spontaneous self-pollination in all flower colour morphs of

  • Our results show that the extreme differences in flower colours among the human-perceived red, white and purple-blue morphs of A. coronaria, can be sensed by bees, and earlier data showed that large red flowers are attractive to beetles

Read more

Summary

Introduction

Flower colour polymorphism (hereafter FCP) refers to the variation in flower colours within or between natural populations of the same species. FCP may include cases of gradual [1], but mainly refers to discrete differences in flower colours among morphs [2,3,4,5,6]. Pollinators’ constancy, especially of bees, occurs when they return to feed on any preferred rewarding flower after quickly learning its visual and chemical properties. Such constancy to one flower morph and avoidance of others may cause divergent evolution [10]. The coexistence of multiple colour morphs within any species requires special attention.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call