Abstract

In multi-fractured horizontal wells (MFHW), fracture properties such as permeability and fracture half-length significantly deteriorate during production, which negatively affects gas production from shale reservoirs. Therefore, it is crucial to evaluate the temporal changes in fracture properties using production data. This paper presents two multiphase flowback models for gas and water phase under boundary dominated flow (BDF) condition by considering gas influx from matrix. In addition, a workflow is proposed to quantitatively evaluate hydraulic fracture closure and fracture properties using both water-phase and gas-phase flowback data. A material balance equation (MBE) is derived to obtain average pressure in the fracture by calculating gas influx from matrix under variable bottomhole pressure (BHP) condition based on Duhamel's principle. The flowback models, average pressure calculation method, and workflow are validated against numerical simulations and applied to an MFHW drilled in Marcellus Shale. The results show that the developed models are capable of predicting fracture properties, and MBE could accurately calculate average pressure in the fracture. Furthermore, the proposed workflow provides quantitative insights into the performance of stimulation jobs by accurately predicting fracture half-length, fracture permeability, and permeability modulus using flowback data. By reconciling flowback analysis with long-term production data analysis, a significant decrease in fracture properties due to fracture closure is observed in the Marcellus MFHW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.