Abstract
In data center networks, many network-intensive applications leverage large fan-in and many-to-one communication to achieve high performance. However, the special traffic patterns, such as micro-burst and high concurrency, easily cause TCP Incast problem and seriously degrade the application performance. To address the TCP Incast problem, we first reveal theoretically and empirically that alleviating packet burstiness is much more effective in reducing the Incast probability than controlling the congestion window. Inspired by the findings and insights from our experimental observations, we further propose a general supporting scheme Adaptive Pacing (AP), which dynamically adjusts burstiness according to the flow concurrency without any change on switch. Additionally, a sender-based approach is proposed to estimate the flow concurrency. Another feature of AP is its broad applicability. We integrate AP transparently into different TCP protocols (i.e., DCTCP, L2DCT and D2TCP). Through a series of large-scale NS2 simulations and testbed experiments, we show that AP significantly reduces the Incast probability across different TCP protocols and the network goodput can be increased consistently by on average $7\times $ under severe congestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.