Abstract

Secondary flows were experimentally examined in three 90° curved ducts with square cross sections and different radii of curvature. Dean numbers were from 1.5 × 104 to 3.6 × 104 and radius ratios of 0.5, 2.3, and 3.0 were used. Streak photography flow measurements were made and general developing secondary flow patterns were studied for three cross sections in each bend: the inlet (0° plane), the midpoint (45° plane), and the outlet (90° plane). At the 0° plane, stress driven secondary flows were found to consist of flow toward the duct corners from the center, balanced by return flow at the side bisectors. This resulted in eight symmetric flow patterns at the inlet. After a rapid transition region, the pressure driven secondary flow patterns were found to be characterized by flow moving toward the outer curved wall at the axial midplane and returning to the inner wall along the duct walls. At the 45° and 90° planes two symmetric flow patterns were observed. Secondary flow velocities in the test elbow with the smallest radius of curvature, where centrifugal forces are greater, were as much as 27% higher than secondary flows in the more gradual turns examined in this study. Also, the pressure driven secondary flows at the exit were higher than the stress driven flows at the inlet by as much as 39%. The elbow with a radius ratio of 0.5 was found to influence the upstream inlet conditions the most and the secondary flow velocities at the inlet were as much as 56% higher than for the larger radii of curvature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call