Abstract

The unsteady low Reynolds number aerodynamics of flapping flight was investigated experimentally through flow visualization by suspended particle imagery and wall shear stress measurement from micro-array hot-film anemometry. In conjunction, a mechanism was developed to create a flapping motion with three degrees of freedom and adjustable flapping frequency. The flapping kinematics and wing shape were selected for dynamic similarity to a hummingbird during hovering flight. Flow visualization was used to validate the anemometry observations of leading edge vortex (LEV) characteristics and to investigate the necessity of spanwise flow in LEV stability. The shear sensors determined LEV characteristics throughout the translation section of the stroke period for various wing speeds. It was observed that a minimum frequency between 2 and 3.5 Hz is required for the formation and stabilization of a LEV. The vortex strength peaked around 30% of the flapping cycle (corresponding to just past the translation midpoint), which agrees with results from previous studies conducted by others. The shear sensors also indicated a mild growth in LEV size during translation sections of the wing’s motion. This growth magnitude was nearly constant through a range of operating frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call