Abstract

Accurately interpreting three dimensional (3D) vector quantities output as solutions to high-resolution computational fluid dynamics (CFD) simulations can be an arduous, time-consuming task. Scientific visualization of these fields can be a powerful aid in their understanding. However, numerous pitfalls present themselves ranging from computational performance to the challenge of generating insightful visual representations of the data. In this paper, we briefly survey current practices for visualizing 3D vector fields, placing particular emphasis on those data arising from CFD simulations of turbulence. We describe the capabilities of a vector field visualization system that we have implemented as part of an open source visual data analysis environment. We also describe a novel algorithm we have developed for illustrating the advection of one vector field by a second flow field. We demonstrate these techniques in the exploration of two sets of runs. The first comprises an ideal and a resistive magnetohydrodynamic (MHD) simulation. This set is used to test the validity of the advection scheme. The second corresponds to a simulation of MHD turbulence. We show the formation of structures in the flows, the evolution of magnetic field lines, and how field line advection can be used effectively to track structures therein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call