Abstract

Experiments are conducted to determine the damping for a tube in tube arrays subjected to liquid cross-flow; damping factors in the lift and drag directions are measured for in-line and staggered arrays. It is found that: 1) fluid damping is not a constant, but a function of flow velocity; 2) damping factors in the lift and drag directions are different; 3) fluid damping depends on the tube location in an array; 4) flow velocity-dependent damping is coupled with vortex shedding process and fluid-elastic instability; and 5) flow velocity-dependent damping may be negative. This study demonstrates that flow velocity-dependent damping is important. These characteristics should be properly taken into account in the mathematical modeling of tube arrays subjected to cross-flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.