Abstract

Angle resolved 2-D PIV measurements were performed to characterise the flow and turbulence as well as indicate potential droplet break up mechanisms in an in-line Silverson 150/250 high shear mixer, using water as the working fluid in the turbulent regime (120,000 < Re < 420,000). Distributions of Reynolds stresses, turbulent kinetic energy (TKE), and energy dissipation rates (ε) were examined. The regions of interest (ROI) were: A – jet emanating from a stator hole and B – the rotor swept volume. The complex flow pattern can cause droplet break up under either laminar or turbulent conditions depending on the characteristic length and velocity in the ROI; break up due to turbulence in the inertial regime was identified as the dominant mechanism in this study. Evaluated energy dissipation rates obtained assuming either a fully resolved velocity field (DE) or using the Smagorinsky closure model (SGS) were found to depend on rotor speed e.g. ε∝Nb with b exponents of 1.59–1.90 (DE) and 2.42–2.84 (SGS), which are comparable to existing literature values. The influence on ε of the rotor speed, external pump flow rate and induced backpressure on the mixer outlet, were also investigated. Analysis revealed that the intensity and propensity of ε is dictated by the dominant flow in the mixing head e.g. radial flow at high pump flow rates, prominent in ROI A or tangential flow at high rotor speeds and when backpressure is induced, prominent in ROI B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.