Abstract

A large Eddy simulation (LES) based computational fluid dynamics study was performed to investigate gas transport and mixing in patient specific human lung models during high frequency oscillatory ventilation. Different pressure-controlled waveforms (sinusoidal, exponential and square) and ventilator frequencies (15, 10 and 6Hz) were used (tidal volume=50mL). The waveforms were created by solving the equation of motion subjected to constant lung wall compliance and flow resistance. Simulations were conducted with and without endotracheal tube to understand the effect of invasive management device. Variation of pressure-controlled waveform and frequency exhibits significant differences on counter flow pattern, which could lead to a significant impact on the gas mixing efficiency. Pendelluft-like flow was present for the sinusoidal waveform at all frequencies but occurred only at early inspiration for the square waveform at highest frequency. The square waveform was most efficient for gas mixing, resulting in the least wall shear stress on the lung epithelium layer thereby reducing the risk of barotrauma to both airways and the alveoli for patients undergoing therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.