Abstract
Driven by a growing importance to engineered structures, investigating the flow characteristics of turbidity currents interacting with a basal obstruction has become popular over the last three decades. However, research has focused on confined studies or numerical simulations, whereas in situ turbidity currents are typically unconfined. The present study investigates experimentally the velocity and turbulence structure of an unconfined turbidity current, in the immediate regions surrounding a rectangular obstacle. Initial density of the current, and substrate condition is varied. Through a novel technique of installing ultrasonic probes within the obstacle, the presence of a velocity recirculation region immediately upstream and downstream of the obstacle is revealed and confirmed with high-resolution imagery. This was found to be comparable to previous confined studies, suggesting that stream-wise velocity profile structure is somewhat independent of confinement. The obstacle was found to reduce velocity and turbulence intensity maxima downstream of the obstacle when compared with unobstructed tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.