Abstract

We investigate a flow in a flat vortex chamber in which the distance between the end walls is smaller than the radius of the chamber. The study was mainly performed by optical methods: a Topler device was employed, with the Foucault knife replaced by a diaphragm. It is shown that the flow in the chamber has a complicated spatial structure. In addition to the basic helical flow, an intense “transverse” rotation of the type of Taylor-Gortler vortices occurs. In contrast to previously studied flows, where these vortices were observed near a concave surface, in the motion considered transverse vortices occur in the entire working volume of the chamber. In this case, four parallel vortex filaments are formed. The high intensity of the vortices has allowed one to visualize them by the Topler method and by “tinting” the flow by highly disperse particles. Quantitative dependences of the dimensions of the vortex cells on the flow regime, i.e., on the pressure of gas deceleration, were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.